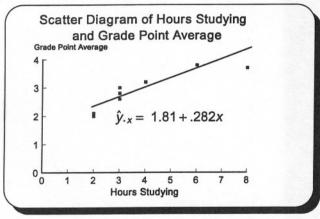

Quick Questions 23 Correlation Analysis

- Place the number of the appropriate formula, expression, or term next to the appropriate concept.
 - A. Coefficient of determination __4__
 - B. Coefficient of correlation 2
 - C. A range for r 5
 - D. Coefficient of nondetermination 1
 - E. The test statistic (t) used to measure the significance of r ___3__
- Draw the following scatters and place the 11. appropriate value for r in the space provided.


1.	1- r ² , the variability in y that is not explained by				
2.	$\frac{n(\sum XY) - (\sum X)(\sum Y)}{\sqrt{[n(\sum X^2) - (\sum X)^2][n(\sum Y^2) - (\sum Y)^2]}}$				
3.	$\frac{r-\rho}{\sqrt{\frac{1-r^2}{n-2}}}$				
4.	r ² , the variability in y that is explained by x				
5.	-1 ≤ r ≤ +1				

III. Draw a scatter diagram showing how hours studying per weekend affect grade point average.

Hours Studying per Weekend(x)	Grade Point Average (y)	XY	X²	Y ²
3	3.0	9.0	9	9.00
2	2.0	4.0	4	4.00
6	3.8	22.8	36	14.44
3	2.6	7.8	9	6.76
4	3.2	12.8	16	10.24
8	3.7	29.6	64	13.69
2	2.1	4.2	4	4.41
<u>3</u>	2.8	8.4	9	7.84
31	23.2	98.6	151	70.38

- IV. Using the data in question III, calculate the following:
 - Coefficient of correlation (to 3 decimal places)

$$r = \frac{n(\sum XY) - (\sum X)(\sum Y)}{\sqrt{[n(\sum X^2) - (\sum X)^2][n(\sum Y^2) - (\sum Y)^2]}} = \frac{8(98.6) - (31)(23.2)}{\sqrt{[8(151) - (31)^2][8(70.38) - (23.2)^2]}} = \frac{69.6}{\sqrt{(247)(24.8)}} = .889$$

Coefficient of determination

$$r^2 = (r)^2 = (.889)^2 = .790 \text{ or } 79.0\%$$

C. Coefficient of nondetermination

$$\tilde{r}^2 = 1 - r^2 = 1 - .790 = .210 \text{ or } 21.0\%$$

D. Interpret the answer to question IV B. Seventy-nine percent of grade variability is accounted for by study hour variability.

- V. Could ρ (rho) be zero at the .01 level of significance?
 - 1. The null hypothesis and alternate hypothesis are H_0 : $\rho = 0$ and H_1 : $\rho \neq 0$.
 - 2. The level of significance will be .01 for this two-tail problem with n 2 degrees of freedom.
 - 3. The relevant statistic will be r.
 - 4. If t from the test statistic is beyond the critical value of t, the null hypothesis will be rejected.
 - 5. Apply the decision rule.

$$df = n - 2 = 8 - 2 = 6 \rightarrow t = 3.707$$

$$t = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{.889 - 0}{\sqrt{\frac{1 - (.889)^2}{8 - 2}}} = 4.76 \quad \text{Reject H}_0 \text{ because } 4.76 > 3.707.$$
Rho could not be zero.

QQ 150 and 151